
Simscape™ 3
Language Guide



How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Simscape™ Language Guide
© COPYRIGHT 2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
October 2008 Online only New for Version 3.0 (Release 2008b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Contents

About the Simscape Language

1
What Is Simscape Language? . . . . . . . . . . . . . . . . . . . . . . . 1-2

Typical Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

About Simscape Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Simscape File Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Model Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Basic File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
Basic Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

Creating a New Physical Domain . . . . . . . . . . . . . . . . . . . 1-12
When to Define a New Physical Domain . . . . . . . . . . . . . . . 1-12
How to Define a New Physical Domain . . . . . . . . . . . . . . . . 1-13

Creating Custom Components . . . . . . . . . . . . . . . . . . . . . . 1-14
Component Types and Prerequisites . . . . . . . . . . . . . . . . . . 1-14
How to Create a New Behavioral Model . . . . . . . . . . . . . . . 1-14
Defining Domain-Wide Parameters . . . . . . . . . . . . . . . . . . . 1-15
Adding a Custom Block Library . . . . . . . . . . . . . . . . . . . . . . 1-16

Writing Simscape Files

2
Declaring Domains and Components . . . . . . . . . . . . . . . . 2-2
Declaration Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Member Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Member Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Declaring a Member as a Value with Unit . . . . . . . . . . . . . 2-6
Declaring Through and Across Variables for a Domain . . . 2-7

iii



Declaring Component Variables . . . . . . . . . . . . . . . . . . . . . . 2-7
Declaring Component Parameters . . . . . . . . . . . . . . . . . . . . 2-8
Declaring Domain Parameters . . . . . . . . . . . . . . . . . . . . . . . 2-9
Declaring Component Nodes . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Declaring Component Inputs and Outputs . . . . . . . . . . . . . 2-11
Example — Declaring a Mechanical Rotational Domain . . 2-11
Example — Declaring a Spring Component . . . . . . . . . . . . 2-12

Defining Component Setup . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Setup Section Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Validating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Computing Derived Parameters . . . . . . . . . . . . . . . . . . . . . . 2-16
Setting Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
Defining Relationship Between Component Variables and
Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18

Defining Component Equations . . . . . . . . . . . . . . . . . . . . . 2-19
Equation Section Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Equation Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Specifying Mathematical Equality . . . . . . . . . . . . . . . . . . . . 2-20
Use of Relational Operators in Equations . . . . . . . . . . . . . . 2-22
Equation Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
Equation Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
Using if Statements in Equations . . . . . . . . . . . . . . . . . . . . 2-25
Examples of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26

Putting It Together — Complete Component
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
Mechanical Component Example — Spring . . . . . . . . . . . . 2-28
Electrical Component Example — Ideal Capacitor . . . . . . . 2-29

Working with Domain Parameters . . . . . . . . . . . . . . . . . . 2-31
Propagation of Domain Parameters . . . . . . . . . . . . . . . . . . . 2-31
Propagating Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
Source Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
Blocking Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33

Attribute Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Attribute Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Model Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Member Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35

iv Contents



Subclassing and Inheritance . . . . . . . . . . . . . . . . . . . . . . . . 2-37

Using Simscape Files in Block Diagrams

3
Adding Custom Block Libraries Generated from
Simscape Component Files . . . . . . . . . . . . . . . . . . . . . . . 3-2
Organizing and Converting Your Simscape Files . . . . . . . . 3-2
Customizing the Library Name and Appearance . . . . . . . . 3-4
Customizing the Library Icon . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Example — Creating and Customizing Block Libraries . . . 3-6
Specifics of Using Customized Domains . . . . . . . . . . . . . . . 3-7

Customizing the Block Name and Appearance . . . . . . . 3-9
Default Block Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
How to Customize the Block Name . . . . . . . . . . . . . . . . . . . 3-11
How to Describe the Block Purpose . . . . . . . . . . . . . . . . . . . 3-12
How to Specify Meaningful Names for the Block
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13

How to Customize the Names and Locations of the Block
Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14

How to Customize the Block Icon . . . . . . . . . . . . . . . . . . . . . 3-16
Example — Customized Block Display . . . . . . . . . . . . . . . . 3-17

Case Study — Creating a Basic Custom Block
Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Building the Custom Library . . . . . . . . . . . . . . . . . . . . . . . . 3-20
Adding a Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20
Adding Detail to a Component . . . . . . . . . . . . . . . . . . . . . . . 3-21
Adding a Component with an Internal Variable . . . . . . . . . 3-23
Customizing the Block Icon . . . . . . . . . . . . . . . . . . . . . . . . . 3-25

Case Study — Creating an Electrochemical Library . . 3-26
Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
Building the Custom Library . . . . . . . . . . . . . . . . . . . . . . . . 3-27
Defining a New Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
Structuring the Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30
Defining a Reference Component . . . . . . . . . . . . . . . . . . . . . 3-30

v



Defining an Ideal Source Component . . . . . . . . . . . . . . . . . . 3-31
Defining Measurement Components . . . . . . . . . . . . . . . . . . 3-32
Defining Basic Components . . . . . . . . . . . . . . . . . . . . . . . . . 3-34
Defining a Cross-Domain Interfacing Component . . . . . . . 3-36
Customizing the Appearance of the Library . . . . . . . . . . . . 3-38
Using the Custom Components to Build a Model . . . . . . . . 3-39
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39

Index

vi Contents



1

About the Simscape
Language

• “What Is Simscape Language?” on page 1-2

• “Typical Tasks” on page 1-3

• “About Simscape Files” on page 1-5

• “Creating a New Physical Domain” on page 1-12

• “Creating Custom Components” on page 1-14



1 About the Simscape™ Language

What Is Simscape Language?
The Simscape™ language extends the Simscape modeling environment by
enabling you to create new components that do not exist in the Foundation
library or in any of the vertical products. It is a dedicated textual language for
modeling physical systems and has the following characteristics:

• Derives from MATLAB® and familiar to those who use MATLAB

• Contains additional constructs specific to physical modeling and excludes
constructs that have nothing to do with physical modeling

• Incorporated into the Simscape modeling interface

• Not focused on algorithm development

The Simscape language makes modeling physical systems easier and
intuitive. It lets you create new physical domains and components as textual
files and then use them in Simscape block diagrams to model the desired
physical effects.

1-2



Typical Tasks

Typical Tasks
Simscape block libraries contain a comprehensive selection of blocks that
represent engineering components such as valves, resistors, springs, and so
on. These prebuilt blocks, however, may not be sufficient to address your
particular engineering needs. When you need to extend the existing block
libraries, use the Simscape language to define customized components, or
even new physical domains, as textual files. Then convert your textual
components into libraries of additional Simscape blocks that you can use in
your model diagrams. For more information on the modeling interface, see
Chapter 3, “Using Simscape Files in Block Diagrams”.

The following table lists the typical tasks along with links to the background
information and examples.

Task Background Information Examples

Create a custom component
model based on equations

“Creating Custom
Components” on page 1-14

“Declaring Domains and
Components” on page 2-2

“Defining Component Setup”
on page 2-14

“Defining Component
Equations” on page 2-19

“Example — Declaring a
Spring Component” on page
2-12

“Mechanical Component
Example — Spring” on page
2-28

“Electrical Component
Example — Ideal Capacitor”
on page 2-29

Add a custom block library to
Simscape libraries

“Adding Custom Block
Libraries Generated from
Simscape Component Files” on
page 3-2

“Customizing the Block Name
and Appearance” on page 3-9

“Example — Creating and
Customizing Block Libraries”
on page 3-6

“Example — Customized Block
Display” on page 3-17

1-3



1 About the Simscape™ Language

Task Background Information Examples

Define a new domain, with
associated Through and Across
variables, and then use it in
custom components

“Creating a New Physical
Domain” on page 1-12

“Declaring Domains and
Components” on page 2-2

“Example — Declaring
a Mechanical Rotational
Domain” on page 2-11

“Propagation of Domain
Parameters” on page 2-31

Create a component that
supplies domain-wide
parameters (such as fluid
temperature) to the rest of the
model

“Working with Domain
Parameters” on page 2-31

“Source Components” on page
2-32

1-4



About Simscape™ Files

About Simscape Files

In this section...

“Simscape File Type” on page 1-5
“Model Types” on page 1-5
“Basic File Structure” on page 1-9
“Basic Grammar” on page 1-10

Simscape File Type
The Simscape file is a dedicated file type in the MATLAB environment. It
has the extension .ssc.

The Simscape file contains language constructs that do not exist in MATLAB
and are specific to modeling physical objects, described in the following
sections. However, the Simscape file incorporates the basic MATLAB
programming syntax at the lowest level.

Simscape files must reside in a +package directory on the MATLAB path:

• directory_on_the_path/+MyPackage/MyComponent.ssc

• directory_on_the_path/+MyPackage/+Subpackage/.../MyComponent.ssc

For more information on packaging your Simscape files, see “Adding Custom
Block Libraries Generated from Simscape Component Files” on page 3-2.

Model Types
There are two model types:

• Domain models describe the physical domains through which energy and
data are exchanged between components models. These correspond to port
types, for example, translational, rotational, hydraulic, and so on.

• Component models describe the physical components that you wish to
model, that is, they correspond to Simulink blocks.

1-5



1 About the Simscape™ Language

Model description is split into the following pieces:

• Interface or Declaration — Declarative section similar to the MATLAB
class system declarations:

- For domain models, declares variables (Across and Through) and
parameters

- For component models, declares nodes, inputs and outputs, parameters,
and variables

• Implementation (only for component models) — Describes run-time
functionality of the model. Implementation consists of two sections:

1-6



About Simscape™ Files

- Setup — Performs initialization and setup. Executed once for each
instance of the component in the top-level model during model
compilation.

- Equation — Describes underlying equations. Executed throughout
simulation.

Like the MATLAB class system, these act on a specific instance of the class.

Unlike the MATLAB class system:

• The object is not passed as the first argument to function. This reduces
syntax with no loss of functionality.

• These functions have specific roles in the component lifecycle, as shown in
the following diagram.

1-7



1 About the Simscape™ Language

Component Instance Lifecycle

Top-Level Model Construction

1. Component instance constructed
– Constructed by invoking file name from MATLAB

2. Component Instance added to top-level model
– Top-level model is constructed programmatically from many components
– Component instance is one of many component instances in the model

3. Parameters set on component instance

1-8



About Simscape™ Files

4. Component instance connected to other members of the top-level model

Top-Level Model Compilation

5. setup function called once for each component instance in the top-level
model

Top-Level Model Simulation

6. (Conceptually) equation function called for each component instance in the
top-level model many times throughout the simulation.

Basic File Structure
Each model is defined in its own file with a .ssc extension. For example,
MyComponent is defined in MyComponent.ssc. A model may be a domain
model or a component model. Each Simscape file starts with a line specifying
the model class and identifier:

ModelClass Identifier

where

• ModelClass is either domain or component

• Identifier is the name of the model

For example:

domain rotational

or

component spring

The basic file structure for domain models and component models is similar:

1-9



1 About the Simscape™ Language

Basic Grammar
The following table describes the Simscape file grammar. Brackets [] indicate
optional elements. The pipe | indicates a logical OR. Required characters
and keywords are blue.

Model ModelClass [ ( AttributeList ) | Space ] Identifier [ <
Identifier ] Separator
DeclarationSection Separator
[ SetupSection Separator ]
[ EquationSection Separator ]
end

ModelClass domain | component

DeclarationSection DeclarationBlock [ Separator DeclarationBlock ]
DeclarationBlock MemberClass [ ( AttributeList ) ] Separator

Identifier = Expression Separator
[ Identifier = Expression Separator ]
end

MemberClass variables | throughs | parameters | inputs |
outputs | nodes

1-10



About Simscape™ Files

SetupSection function setup
SetupStatement Separator
[ SetupStatement Separator ]
end

EquationSection equation
EquationStatement | EquationIfStatement
[ EquationStatement | EquationIfStatement ]
end

EquationStatement EquationExpression == EquationExpression;
EquationIfStatement if Expression

EquationStatement [ EquationStatement ]
[ elseif Expression
EquationStatement [ EquationStatement ] ]
else
EquationStatement [ EquationStatement ]
end

where

AttributeList Attribute list as defined in the MATLAB class system
grammar

Expression MATLAB expression
EquationExpression A MATLAB expression that does not contain a

relational operator (such as == or <) or an expression
surrounded by ()

Identifier MATLAB identifier
Separator Comma, semicolon, or newline
SetupStatement A combination of assignment statements, simple if

statements, and error functions
Space Required white space, but not newline

1-11



1 About the Simscape™ Language

Creating a New Physical Domain

In this section...

“When to Define a New Physical Domain” on page 1-12
“How to Define a New Physical Domain” on page 1-13

When to Define a New Physical Domain
A physical domain provides an environment, defined primarily by its Across
and Through variables, for connecting the components in a Physical Network.
Component nodes are typed by domain, that is, each component node can be
connected only to the appropriate type of domain.

You do not need to define a new physical domain to create custom components.
Simscape software comes with several built-in domains, such as mechanical
translational, mechanical rotational, electrical, hydraulic, and so on. If you
want to create a custom component to be connected to the standard Simscape
blocks, use the built-in domain definitions. For a complete listing of the
built-in domains, see “Built-In Simscape Domains” in the Simscape Reference.

You need to define a new domain only if the built-in domain definitions do
not satisfy your modeling requirements. For example, to enable modeling
pneumatic systems, you need to create a new domain with the appropriate
Across and Through variables. If you need to model a thermohydraulic
system, you can create a custom hydraulic domain that accounts for fluid
temperature by supplying a domain-wide parameter (for an example, see
“Propagation of Domain Parameters” on page 2-31).

Once you define a custom physical domain, you can use it for defining nodes
in your custom components. These nodes, however, can be connected only to
other nodes of the same domain type. For example, if you define a custom
hydraulic domain as described above and then use it when creating custom
components, you will not be able to connect these nodes with the regular
hydraulic ports of the standard Simscape blocks, which use the built-in
hydraulic domain definition.

1-12



Creating a New Physical Domain

How to Define a New Physical Domain
To define a new physical domain, you must declare the Through and Across
variables associated with it. For more information, see “Basic Principles of
Modeling Physical Networks” in the Simscape User’s Guide.

A domain file must begin with the domain keyword, followed by the domain
name, and be terminated by the end keyword.

Domain files contain only the declaration section. Two declaration blocks
are required:

• The Across variables declaration block, which begins with the variables
keyword and is terminated by the end keyword. It contains declarations
for all the Across variables associated with the domain. A domain model
class definition can contain multiple Across variables, combined in a single
variables block.

• The Through variables declaration block, which begins with the throughs
keyword and is terminated by the end keyword. It contains declarations
for all the Through variables associated with the domain. A domain model
class definition can contain multiple Through variables, combined in a
single throughs block.

For more information on declaring the Through and Across variables, see
“Declaring Through and Across Variables for a Domain” on page 2-7.

The parameters declaration block is optional. If present, it must begin with
the parameters keyword and be terminated by the end keyword. This
block contains declarations for domain parameters. These parameters are
associated with the domain and can be propagated through the network to all
components connected to the domain. For more information, see “Working
with Domain Parameters” on page 2-31.

For an example of a domain file, see “Example — Declaring a Mechanical
Rotational Domain” on page 2-11.

1-13



1 About the Simscape™ Language

Creating Custom Components

In this section...

“Component Types and Prerequisites” on page 1-14
“How to Create a New Behavioral Model” on page 1-14
“Defining Domain-Wide Parameters” on page 1-15
“Adding a Custom Block Library” on page 1-16

Component Types and Prerequisites
In physical modeling, there are two types of models:

• Behavioral — A model that is implemented based on its physical behavior,
described by a system of mathematical equations. An example of a
behavioral block implementation is the Variable Orifice block.

• Structural — A model that is constructed out of other blocks, connected
in a certain way. An example of a structional block implementation is
the 4-Way Directional Valve block (available with SimHydraulics® block
libraries), which is constructed based on four Variable Orifice blocks.

Simscape language lets you create new behavioral models when your design
requirements are not satisfied by the libraries of standard blocks provided
with Simscape and its vertical products.

You can then use these custom behavioral models either as standalone blocks
or as building blocks for structural models. To create a new structural model,
use masked subsystems. For more information, see “Creating Subsystems” in
the Simulink® User’s Guide.

A prerequisite to creating components is having the appropriate domains for
the component nodes. You can use built-in Simscape domains or create your
own, as described in “Creating a New Physical Domain” on page 1-12.

How to Create a New Behavioral Model
To create a new behavioral model, define a component model class by writing
a component file.

1-14



Creating Custom Components

A component file must begin with the component keyword, followed by the
component name, and be terminated by the end keyword.

Component files typically contain three sections:

• Declaration — Contains all the member class declarations for the
component, such as parameters, variables, nodes, inputs, and outputs.
Each member class declaration is a separate declaration block, which
begins with the appropriate keyword (corresponding to the member class)
and is terminated by the end keyword. For more information, see the
component-related sections in “Declaring Domains and Components” on
page 2-2.

• Setup — Prepares the component for simulation. The body of the setup
function can contain assignment statements, if and error statements, and
across and through functions. The setup function is executed once for
each component instance during model compilation. It takes no arguments
and returns no arguments. For more information, see “Defining Component
Setup” on page 2-14.

• Equation — Defines the component equations. The equation function is
executed throughout the simulation. It takes one input, time, and returns
no outputs. For more information, see “Defining Component Equations”
on page 2-19.

Defining Domain-Wide Parameters
Another type of a custom block is an environment block that acts as a source
of domain-wide parameters. For example, you can create a Hydraulic
Temperature block that supplies the temperature parameter to the rest
of the model.

Note The built-in hydraulic domain does not contain a temperature
parameter. You would have to create a customized hydraulic domain where
this parameter is declared. Components using your own customized hydraulic
domain cannot be connected with the components using the built-in Simscape
hydraulic domain. Use your own customized domain definitions to build
complete libraries of components to be connected to each other.

1-15



1 About the Simscape™ Language

You create environment components similar to behavioral components,
by writing a component file that consists of the declaration, setup, and
equation sections. However, to indicate that this component supplies the
parameter value to the rest of the model, set the Propagation attribute of
this component to source. For more information, see “Working with Domain
Parameters” on page 2-31 and “Attribute Lists” on page 2-34.

Adding a Custom Block Library
Adding a custom block library involves creating new components (behavioral
or environment). It may involve creating a new physical domain if the built-in
Simscape domain definitions do not satisfy your modeling requirements.

After you have created the textual component files, convert them into a
library of blocks using the procedure described in “Adding Custom Block
Libraries Generated from Simscape Component Files” on page 3-2. You can
control the block names and appearance by using optional comments in the
component file. For more information, see “Customizing the Block Name
and Appearance” on page 3-9.

1-16



2

Writing Simscape Files

• “Declaring Domains and Components” on page 2-2

• “Defining Component Setup” on page 2-14

• “Defining Component Equations” on page 2-19

• “Putting It Together — Complete Component Examples” on page 2-28

• “Working with Domain Parameters” on page 2-31

• “Attribute Lists” on page 2-34

• “Subclassing and Inheritance” on page 2-37



2 Writing Simscape™ Files

Declaring Domains and Components

In this section...

“Declaration Grammar” on page 2-2
“Definitions” on page 2-3
“Member Declarations” on page 2-4
“Member Summary” on page 2-5
“Declaring a Member as a Value with Unit” on page 2-6
“Declaring Through and Across Variables for a Domain” on page 2-7
“Declaring Component Variables” on page 2-7
“Declaring Component Parameters” on page 2-8
“Declaring Domain Parameters” on page 2-9
“Declaring Component Nodes” on page 2-9
“Declaring Component Inputs and Outputs” on page 2-11
“Example — Declaring a Mechanical Rotational Domain” on page 2-11
“Example — Declaring a Spring Component” on page 2-12

Declaration Grammar

2-2



Declaring Domains and Components

The following table describes the declaration section grammar. Brackets
[] indicate optional elements. The pipe | indicates a logical OR. Required
characters and keywords are blue.

Declaration DeclarationBlock [ Separator DeclarationBlock ]
DeclarationBlock MemberClass [ ( AttributeList ) ] Separator

Identifier = Expression Separator
[ Identifier = Expression Separator ]
end

MemberClass variables | throughs | parameters | inputs |
outputs | nodes

where

AttributeList Attribute list as defined in the MATLAB class system
grammar

Expression MATLAB expression
Identifier MATLAB identifier
Separator Comma, semicolon, or newline

Definitions
The declaration section of a Simscape file may contain one or more member
declarations.

2-3



2 Writing Simscape™ Files

Term Definition

Member • A member is a piece of a model’s declaration.
The collection of all members of a model is its
declaration.

• It has an associated data type and identifier.

• Each member is associated with a unique member
class. Additionally, members may have some
specific attributes.

Member class • A member class is the broader classification of a
member.

• The following is the set of member classes:
variables (Across variables in domain, or
component variables), throughs (Through
variables in domain), parameters, inputs,
outputs, nodes.

• Two members may have the same type, but be
of different member classes. For example, a
parameter and an input may have the same data
type, but because they are of different member
classes, they behave differently.

Member Declarations
The following rules apply to declaring members:

• Like the MATLAB class system, declared members appear in a declaration
block:

<ModelClass> <Identifier>
<MemberClass>

% members here
end
...

end

2-4



Declaring Domains and Components

• Unlike the MATLAB class system, <MemberClass> may take on any of the
available member classes and dictates the member class of the members
defined within the block.

• Like the MATLAB class system, each declared member is associated with
a MATLAB identifier, <Identifier>. Unlike the MATLAB class system,
members must be declared with a right-hand side value.

<ModelClass> <Identifier>
<MemberClass>

<Identifier> = <Expression>;
% more members

end
...

end

• <Expression> on the right-hand side of the equal sign (=) is a MATLAB
expression. It could be a constant expression, or a call to a MATLAB
function.

• The MATLAB class of the expression is restricted by the class of the
member being declared. Also, the data type of the expression dictates data
type of the declared member.

Member Summary
The following table provides the summary of member classes.

Member
Class

Applicable
Model
Classes

MATLAB Class
of Expression

Expression
Meaning

Writable

parameters domain
component

Numerical value
with unit

Default value Yes

variables domain
component

Double value with
unit

Nominal value
and default
initial condition

Yes

throughs domain Double value with
unit

Nominal value
and default
initial condition

No

2-5



2 Writing Simscape™ Files

Member
Class

Applicable
Model
Classes

MATLAB Class
of Expression

Expression
Meaning

Writable

inputs component Double value with
unit

Default value No

outputs component Double value with
unit

Default value No

nodes component Instance of a node
associated with a
domain

Type of domain No

Note When a member is writable, it means that it can be assigned to in
the setup function. Nodes are themselves not writable, but their writable
members (parameters and variables) are.

Declaring a Member as a Value with Unit
In Simscape language, declaration members such as parameters, variables,
inputs, and outputs, are represented as a value with associated unit. The
syntax for a value with unit is essentially that of a two-member value-unit
array:

{ value , 'unit' }

where value is a real matrix, including a scalar, and unit is a valid unit
string, defined in the unit registry, or 1 (unitless).

For example, this is how you declare a parameter as a value with unit:

par1 = { value , 'unit' };

As in MATLAB, the comma is not required, and this syntax is equivalent:

par1 = { value 'unit' };

To declare a unitless parameter, you can either use the same syntax:

par1 = { value , '1' };

2-6



Declaring Domains and Components

or omit the unit and use this syntax:

par1 = value;

Internally, however, this parameter will be treated as a two-member
value-unit array { value , '1' }.

Declaring Through and Across Variables for a
Domain
In a domain file, you have to declare the Through and Across variables
associated with the domain. For more information, see “Basic Principles of
Modeling Physical Networks” in the Simscape User’s Guide.

variables begins an Across variables declaration block, which is terminated
by an end key word. This block contains declarations for all the Across
variables associated with the domain. A domain model class definition can
contain multiple Across variables, combined in a single variables block.
This block is required.

throughs begins a Through variables definition block, which is terminated
by an end key word. This block contains declarations for all the Through
variables associated with the domain. A domain model class definition can
contain multiple Through variables, combined in a single through block.
This block is required.

Each variable is defined as a value with unit:

domain_var1 = { value , 'unit' };

value is the initial value. unit is a valid unit string, defined in the unit
registry. See “Example — Declaring a Mechanical Rotational Domain” on
page 2-11 for more information.

Declaring Component Variables
When you declare Through and Across variables in a component, you are
essentially creating instances of domain Through and Across variables. You
declare a component variable as a value with unit by specifying an initial
value and units commensurate with units of the domain variable.

2-7



2 Writing Simscape™ Files

The following example initializes the Through variable t (torque) as 0 N*m:

variables
t = { 0, 'N*m' };

end

Note After you declare component variables, you have to use through and
across functions in the setup section to specify their relationship with
component nodes.

You can also declare an internal component variable as a value with unit. You
can use such internal variables in the setup and equation sections. Unlike
component parameters, internal component variables do not appear in a block
dialog box of the Simscape block generated from the component file.

Declaring Component Parameters
Component parameters let you specify tunable parameters for the Simscape
block generated from the component file. Parameters will appear in the block
dialog box and can be modified when simulating a model.

You declare each parameter as a value with unit. Specifying an optional
comment lets you control the parameter name in the block dialog box. For
more information, see “How to Specify Meaningful Names for the Block
Parameters” on page 3-13.

The following example declares parameter k, with a default value of 10
N*m/rad, specifying the spring rate of a rotational spring. In the block dialog
box, this parameter will be named Spring rate.

parameters
k = { 10, 'N*m/rad' }; % Spring rate

end

Specifying Parameter Units
When you declare a component parameter, use the units that make sense in
the context of the block application. For example, if you model a solenoid, it is

2-8



Declaring Domains and Components

more convenient for the block user to input stroke in millimeters rather than
in meters. When a parameter is used in the setup and equation sections,
Simscape unit manager handles the conversions.

With temperature units, however, there is an additional issue of whether
to apply linear or affine conversion (see “Thermal Unit Conversions” in the
Simscape User’s Guide). Therefore, when you declare a parameter with
temperature units, you can specify only nonaffine units (kelvin or rankine).
When the block user enters the parameter value in affine units (Celsius or
Fahrenheit), this value is automatically converted to the units specified in
the parameter declaration. By default, affine conversion is applied. If a
parameter specifies relative, rather than absolute, temperature (in other
words, a change in temperature), set its Conversion attribute to relative
(for details, see “Member Attributes” on page 2-35).

Note Member attributes apply to a whole DeclarationBlock. If some of your
parameters are relative and others are absolute, declare them in separate
blocks. You can have more than one declaration block of the same member
type within a Simscape file.

Declaring Domain Parameters
Similar to a component parameter, you declare each domain parameter as a
value with unit. However, unlike component parameters, the main purpose of
domain parameters is to propagate the same parameter value to all or some of
the components connected to the domain. For more information, see “Working
with Domain Parameters” on page 2-31.

Declaring Component Nodes
Component nodes define the conserving ports of a Simscape block generated
from the component file. The type of the conserving port (electrical,
mechanical rotational, and so on) is determined by the type of its parent
domain. The domain defines which Through and Across variables the port can
transfer. Conserving ports of Simscape blocks can be connected only to ports
associated with the same domain. For more information, see “Basic Principles
of Modeling Physical Networks” in the Simscape User’s Guide.

2-9



2 Writing Simscape™ Files

When declaring nodes in a component, you have to associate them with an
existing domain. You need to refer to the domain name using the full path
starting with the top package directory. For more information on packaging
your Simscape files, see “Adding Custom Block Libraries Generated from
Simscape Component Files” on page 3-2.

The following example uses the syntax for the built-in Simscape mechanical
rotational domain:

nodes
r = foundation.mechanical.rotational.rotational;

end

The name of the top-level package directory is +foundation. It contains a
subpackage +mechanical, with a subpackage +rotational, which in turn
contains the domain file rotational.ssc.

If you want to use your own customized rotational domain called
rotational.ssc and located at the top level of your custom package directory
+MechanicalElements, the syntax would be:

nodes
r = MechanicalElements.rotational;

end

Note Components using your own customized rotational domain cannot
be connected with the components using the built-in Simscape mechanical
rotational domain. Use your own customized domain definitions to build
complete libraries of components to be connected to each other.

Specifying an optional comment lets you control the port label and location
in the block icon. For more information, see “How to Customize the Names
and Locations of the Block Ports” on page 3-14. In the following example, the
electrical conserving port will be labelled + and will be located on the top
side of the block icon.

nodes
p = foundation.electrical.electrical; % +:top

end

2-10



Declaring Domains and Components

Declaring Component Inputs and Outputs
In addition to conserving ports, Simscape blocks can contain Physical Signal
input and output ports, directional ports that carry signals with associated
units. These ports are defined in the inputs and outputs declaration blocks
of a component file. Each input or output is defined as a value with unit.

Specifying an optional comment lets you control the port label and location in
the block icon. For more information, see “How to Customize the Names and
Locations of the Block Ports” on page 3-14.

The following example declares an input port s, with a default value of 1
Pa, specifying the control port of a hydraulic pressure source. In the block
diagram, this port will be named Pressure and will be located on the top
side of the block icon.

inputs
s = { 1, 'Pa' }; % Pressure:top

end

Example — Declaring a Mechanical Rotational
Domain
The following file, named rotational.ssc, declares a mechanical rotational
domain, with angular velocity as an Across variable and torque as a Through
variable.

domain rotational
% Define the mechanical rotational domain
% in terms of across and through variables

variables
w = { 1 , 'rad/s' }; % angular velocity

end

throughs
t = { 1 , 'N*m' }; % torque

end

end

2-11



2 Writing Simscape™ Files

Note This domain declaration corresponds to the built-in Simscape
mechanical rotational domain. For a complete listing of the built-in domains,
see “Built-In Simscape Domains” in the Simscape Reference.

Example — Declaring a Spring Component
The following diagram shows a network representation of a
mass-spring-damper system, consisting of four components (mass, spring,
damper, and reference) in a mechanical rotational domain.

The domain is declared in a file named rotational.ssc (see “Example —
Declaring a Mechanical Rotational Domain” on page 2-11). The following
file, named spring.ssc, declares a component called spring. The component
contains:

• Two rotational nodes, r and c (for rod and case, respectively)

• Parameter k, with a default value of 10 N*m/rad, specifying the spring rate

• Through and Across variables, torque t and angular velocity w, later to be
related to the Through and Across variables of the rotational domain

2-12



Declaring Domains and Components

• Internal variable theta, with a default value of 0 rad, specifying relative
angle, that is, deformation of the spring

component spring

nodes

r = foundation.mechanical.rotational.rotational;

c = foundation.mechanical.rotational.rotational;

end

parameters

k = { 10, 'N*m/rad' }; % spring rate

end

variables

theta = { 0, 'rad' }; % introduce new variable for spring deformation

t = { 0, 'N*m' }; % torque through

w = { 0, 'rad/s' }; % velocity across

end

% setup here

% equations here

end

Note This example shows only the declaration section of the spring
component. For a complete file listing of a spring component, including the
setup and equations, see “Mechanical Component Example — Spring” on
page 2-28.

2-13



2 Writing Simscape™ Files

Defining Component Setup

In this section...

“Setup Section Purpose” on page 2-14
“Validating Parameters” on page 2-16
“Computing Derived Parameters” on page 2-16
“Setting Initial Conditions” on page 2-17
“Defining Relationship Between Component Variables and Nodes” on page
2-18

Setup Section Purpose

The setup section of a Simscape file follows the declaration section and
consists of the function named setup. The setup function is executed once for
each component instance during model compilation. It takes no arguments
and returns no arguments.

Note Setup is not a constructor; it prepares the component for simulation.

Use the setup function for the following purposes:

• Validating parameters

2-14



Defining Component Setup

• Computing derived parameters

• Setting initial conditions

• Relating variables and nodes to one another by using across and through
functions

The following rules apply:

• The setup function is executed as regular MATLAB code.

• All members declared in the component are available by their name, for
example:

component MyComponent
parameters

p = {1, 'm' };
end
[...]
function setup

disp( p ); % during compilation, prints value of p
% for each instance of MyComponent in the model

[...]
end

• All members (such as variables, parameters) that are externally writable
are writable within setup. See “Member Summary” on page 2-5 for more
information.

• Local MATLAB variables may be introduced in the setup function. They
are scoped only to the setup function.

The following restrictions apply:

• Command syntax is not supported in the setup function. You must use
the function syntax. For more information, see “Command vs. Function
Syntax” in the MATLAB Programming Fundamentals documentation.

• Persistent and global variables are not supported. For more information,
see “Types of Variables” in the MATLAB Programming Fundamentals
documentation.

• MATLAB system commands using the ! operator are not supported.

2-15



2 Writing Simscape™ Files

• try-end and try-catch-end constructs are not supported.

• Passing declaration members to external MATLAB functions, for example,
my_function(param1), is not supported. You can, however, pass member
values to external functions, for example, my_function(param1.value).

Validating Parameters
The setup function validates parameters using simple if statements and the
error function. For example:

component MyComponent

parameters

LowerThreshold = {1, 'm' };

UpperThreshold = {1, 'm' };

end

[...]

function setup

if LowerThreshold > UpperThreshold

error( 'LowerThreshold is greater than UpperThreshold' );

end

end

[...]

end

Computing Derived Parameters
The setup function can override parameters by assigning to them. For
example, it can verify that a parameter is not greater than the maximum
allowed value, and if it is, issue a warning and assign the maximum allowed
value to the parameter:

component MyComponent

parameters

MyParam = {1, 'm' };

end

[...]

function setup

MaxValue = {1, 'm' };

if MyParam > MaxValue

warning( 'MyParam is greater than MaxValue, overriding with MaxValue' );

MyParam = MaxValue;

2-16



Defining Component Setup

end

end

[...]

end

Note Members are strongly typed. In the example above, MaxValuemust have
the same data type and unit as MyParam. Otherwise, you will get an error.

Setting Initial Conditions
As you declare variables, values that you assign to them are their initial
conditions. However, you can use the setup function to override these initial
conditions by assigning the variable a new value, for example:

component MyComponent

variables

MyVariable = {1, 'm' };

end

[...]

function setup

MaxValue = {1, 'm' };

if MyVariable > MaxValue

warning( 'Initial value of MyVariable is greater than MaxValue, overriding with MaxV

MyVariable = MaxValue; % MyVariable(t = 0) = MaxValue

end

end

[...]

end

Note Variables are also strongly typed. In the example above, MaxValue
must have the same data type and unit as MyVariable. Otherwise, you will
get an error.

2-17



2 Writing Simscape™ Files

Defining Relationship Between Component Variables
and Nodes
Use the across and through functions to establish relationship between the
component variables and nodes. The across function is not strictly necessary
because the same relationship for the Across variables could be established in
the equation section, but it acts as shorthand and adds notation that clearly
illustrates the relationship among the variables. The through function is the
only way to establish relationship between the Through variables. These
functions are especially helpful when the component has multiple nodes
because they clearly indicate branches.

In the following example, r and c are rotational nodes, while t and w are
component variables for torque and angular velocity, respectively. The setup
section defines the relationship between the variables and nodes:

component spring

nodes

r = foundation.mechanical.rotational.rotational;

c = foundation.mechanical.rotational.rotational;

end

[...]

variables

[...]

t = { 0, 'N*m' }; % torque through

w = { 0, 'rad/s' }; % velocity across

end

function setup

through( t, r.t, c.t ); % t a through variable from r to c

across(w, r.w, c.w ); % w an across variable from r to c

[...]

end

% equations here

end

2-18



Defining Component Equations

Defining Component Equations

In this section...

“Equation Section Purpose” on page 2-19
“Equation Grammar” on page 2-20
“Specifying Mathematical Equality” on page 2-20
“Use of Relational Operators in Equations” on page 2-22
“Equation Dimensionality” on page 2-24
“Equation Continuity” on page 2-25
“Using if Statements in Equations” on page 2-25
“Examples of Equations” on page 2-26

Equation Section Purpose

The equation section of a Simscape file follows the declaration and setup
sections. It is executed throughout the simulation. The purpose of the
equation section is to establish the mathematical relationships among a
component’s variables, parameters, inputs, outputs, time and the time
derivatives of each of these entities.

2-19



2 Writing Simscape™ Files

Equation Grammar
The following table describes the equation section grammar. Brackets []
indicate optional elements. The pipe | indicates a logical OR. Required
characters and keywords are blue.

EquationSection equation
EquationStatement | EquationIfStatement
[ EquationStatement | EquationIfStatement ]
end

EquationStatement EquationExpression == EquationExpression;
EquationIfStatement if Expression

EquationStatement [ EquationStatement ]
[ elseif Expression
EquationStatement [ EquationStatement ] ]
else
EquationStatement [ EquationStatement ]
end

where

Expression MATLAB expression
EquationExpression A MATLAB expression that does not contain a

relational operator (such as == or <) or an expression
surrounded by ()

Specifying Mathematical Equality
The equation statements in the equation section of a Simscape file specify
continuous mathematical equality between two expressions. Consider a
simple example:

equation
EquationExpression1 == EquationExpression2;

end

Here we have declared an equality between EquationExpression1 and
EquationExpression2. The left- and right-hand side expressions are of
class EquationExpression. An EquationExpression is any valid MATLAB

2-20



Defining Component Equations

expression that does not use any of the relational operators: ==, <, >, <=,
>=, ~=, &&, ||. EquationExpression may be constructed from any of the
identifiers defined in the model declaration.

The equation is defined with the == operator. This means that the equation
does not represent assignment but rather a symmetric mathematical
relationship between the left- and right-hand operands. Because == is
symmetric, the left-hand operand is not restricted to just a variable. For
example:

component MyComponent
[...]
variables

a = 1;
b = 1;
c = 1;

end
equation

a + b == c;
end

end

The following example is mathematically equivalent to the previous example:

component MyComponent
[...]
variables

a = 1;
b = 1;
c = 1;

end
equation

0 == c - a - b;
end

end

Note Equation statements must be terminated with a semicolon.

2-21



2 Writing Simscape™ Files

Use of Relational Operators in Equations
In the previous section we discussed how == is used to declare mathematical
equalities. In MATLAB, however, == yields an expression like any other
operator. For example:

(a == b) * c;

where a, b, and c represent scalar double values, is a legal MATLAB
expression. This would mean, take the logical value generated by testing a’s
equivalence to b, coerce this value to a double and multiply by c. If a is the
same as b, then this expression will return c. Otherwise, it will return 0.

On the other hand, in MATLAB we can use == twice to build an expression:

a == b == c;

This expression is ambiguous, but MATLAB makes == and other relational
operators left associative, so this expression is treated as:

(a == b) == c;

The subtle difference between (a == b) == c and a == (b == c) can be
significant in MATLAB, but is even more significant in an equation. Because
the use of == is significant in the Simscape language, and to avoid ambiguity,
the following syntax:

component MyComponent
[...]
equation

a == b == c;
end

end

is illegal in the Simscape language. You must explicitly associate top-level
occurrences of relational operators. Either

component MyComponent
[...]
equation

(a == b) == c;
end

2-22



Defining Component Equations

end

or

component MyComponent
[...]
equation

a == (b == c);
end

end

are legal. In either case, the quantity in the parentheses is equated to the
quantity on the other side of the equation.

With the exception of the top-level use of the == operator, == and other
relational operators are left associative. For example:

component MyComponent
[...]
parameters

a = 1;
b = 1;
c = false;

end
variables

d = 1;
end
equation

(a == b == c) == d;
end

end

is legal and interpreted as:

component MyComponent
[...]
parameters

a = 1;
b = 1;
c = false;

2-23



2 Writing Simscape™ Files

end
variables

d = 1;
end
equation

((a == b) == c) == d;
end

end

Equation Dimensionality
The equation expressions on either side of the == operator need not be scalar
expressions. They must be either the same size or one must be scalar. For
example:

equation
[...]
<3x3 EquationExpression> == <3x3 EquationExpression>;
[...]

end

is legal and introduces 9 scalar equations. The statement:

equation
[...]
<1x1 EquationExpression> == <3x3 EquationExpression>;
[...]

end

is also legal. Here, the left-hand side of the equation is expanded, via scalar
expansion, into the same expression replicated into a 3x3 matrix. This
statement also introduces 9 scalar equations.

However, the statement:

equation
[...]
<2x3 EquationExpression> == <3x2 EquationExpression>;
[...]

end

2-24



Defining Component Equations

is illegal because the sizes of the expressions on the left- and right-hand side
are different.

Equation Continuity
The equation section is evaluated in continuous time. Some of the values that
are accessible in the equation section are themselves piecewise continuous,
that is, they change continuously in time. These values are:

• variables

• throughs

• inputs

• outputs

• time

Piecewise continuous indicates that values are continuous over compact time
intervals but may change value at certain instances. The following values
are never continuous:

• parameters

• constants

Countable values, for example, integer or logical, are never continuous.

Continuity is propagated like a data type. It is propagated through
assignment and continuous functions (see “Supported Functions”).

Using if Statements in Equations
You can specify conditional equations by using if statements.

equation
[...]
if Expression

[...]
elseif Expression

[...]
else

2-25



2 Writing Simscape™ Files

[...]
end
[...]

end

Each [...] section may contain one or more equation statements in the
form of:

EquationExpression1 == EquationExpression2;

Note The total number of equation statements and their dimensionality must
be the same for every branch of the if-elseif-else statement.

Example
For a component where x and y are declared as 1x1 variables, specify the
following piecewise equation:

y
x x

x
=

− <= <=⎧
⎨
⎪

⎩⎪

for  

otherwise 

1 1
2

This equation, written in the Simscape language, would look like:

equation
if x >= -1 && x <= 1

y == x;
else

y == x^2;
end

end

Examples of Equations

• “Simple Algebraic System” on page 2-27

• “Using Simulation Time in Equations” on page 2-27

2-26



Defining Component Equations

Simple Algebraic System
This example shows implementation for a simple algebraic system:

y = x2

x = 2y + 1

The Simscape file looks as follows:

component MyAlgebraicSystem
variables

x = 0;
y = 0;

end
equation

y == x^2; % y = x^2
x == 2 * y + 1; % x = 2 * y + 1

end
end

Using Simulation Time in Equations
You can access global simulation time from the equation section using the
time function. time returns the simulation time in seconds.

The following example illustrates y = sin (ωt), where t is simulation time:

component
parameters

w = { 1, `1/s' } % omega
end
outputs

y = 0;
end
equation

y == sin( w * time );
end

end

2-27



2 Writing Simscape™ Files

Putting It Together — Complete Component Examples

In this section...

“Mechanical Component Example — Spring” on page 2-28
“Electrical Component Example — Ideal Capacitor” on page 2-29

Mechanical Component Example — Spring
The following file, my_spring.ssc, implements a component called spring.

The declaration section of the component contains:

• Two rotational nodes, r and c (for rod and case, respectively)

• Parameter k, with a default value of 10 N*m/rad, specifying the spring rate

• Through and Across variables, torque t and angular velocity w, to be
connected to the rotational domain at setup

• Internal variable theta, with a default value of 0 rad, specifying relative
angle, that is, deformation of the spring

The setup section of the component performs the following:

• Checks that the spring rate constant is nonnegative

• Establishes relationships between the component variables and nodes (and
therefore domain variables) using through and across functions

The equation section of the component contains two equations that define
the spring action:

• t = k * theta, that is, torque equals spring deformation times spring rate

• w = theta', that is, angular velocity equals time derivative of spring
deformation

component spring

nodes

r = foundation.mechanical.rotational.rotational;

c = foundation.mechanical.rotational.rotational;

2-28



Putting It Together — Complete Component Examples

end

parameters

k = { 10, 'N*m/rad' };

end

variables

theta = { 0, 'rad' };

t = { 0, 'N*m' }; % torque through

w = { 0, 'rad/s' }; % velocity across

end

function setup

if k < 0

error( 'Spring rate must be greater than zero' );

end

through( t, r.t, c.t ); % torque through from node r to node c

across( w, r.w, c.w ); % velocity across from r to c

end

equation

t == k * theta;

w == theta.der;

end

end

Electrical Component Example — Ideal Capacitor
The following file, ideal_capacitor.ssc, implements a component called
ideal_capacitor.

The declaration section of the component contains:

• Two electrical nodes, p and n (for + and – terminals, respectively)

• Two parameters: C, with a default value of 1 F, specifying the capacitance,
and V0, with a default value of 0 V, specifying the initial voltage

• Through and Across variables, current i and voltage v, to be connected to
the electrical domain at setup

The setup section of the component performs the following:

• Checks that the capacitance is nonnegative

2-29



2 Writing Simscape™ Files

• Establishes relationships between the component variables and nodes (and
therefore domain variables) using through and across functions

The equation section of the component contains the equation that defines
the capacitor action:

• I = C*dV/dt, that is, output current equals capacitance multiplied by the
time derivative of the input voltage

component ideal_capacitor

% Ideal Capacitor

% Models an ideal (lossless) capacitor. The output current I is related

% to the input voltage V by I = C*dV/dt where C is the capacitance.

nodes

p = foundation.electrical.electrical; % +:top

n = foundation.electrical.electrical; % -:bottom

end

parameters

C = { 1, 'F' }; % Capacitance

V0 = { 0, 'V' }; % Initial voltage

end

variables

i = { 0, 'A' }; % Current through variable

v = { 0, 'V' }; % Voltage across variable

end

function setup

if C <= { 0, 'F'}

error( 'Capacitance must be greater than zero' )

end

through( i, p.i, n.i ); % Through variable i from node p to node n

across( v, p.v, n.v ); % Across variable v from p to n

v = V0;

end

equation

i == C*v.der; % Equation

end

end

2-30



Working with Domain Parameters

Working with Domain Parameters

In this section...

“Propagation of Domain Parameters” on page 2-31
“Propagating Components” on page 2-32
“Source Components” on page 2-32
“Blocking Components” on page 2-33

Propagation of Domain Parameters
The purpose of domain parameters is to propagate the same parameter value
to all or some of the components connected to the domain. For example, this
hydraulic domain contains one Across variable, p, one Through variable, q,
and one parameter, t.

domain t_hydraulic

variables

p = { 1e3, 'kPA' }; % pressure

end

throughs

q = { 1e-3, 'm^3/s' }; % flow rate

end

parameters

t = { 303, 'K' }; % fluid temperature

end

end

All components with nodes connected to this domain will have access to the
fluid temperature parameter t.

When dealing with domain parameters, there are three different types of
components. There are some components that will provide the domain
parameters to the larger model, there are some that simply propagate
the parameters, and there are some that do not propagate parameters.
The behavior of the component is specified by the component attribute
Propagation. The Propagation attribute may be set to one of three options:
propagates, source, or blocks. For more information, see “Attribute Lists”
on page 2-34.

2-31



2 Writing Simscape™ Files

Propagating Components
The default setting for the Propagation component attribute is propagates.
Most components will use this setting. If a component is configured to
propagate its domain parameters, then all public nodes connected to this
domain will have the same set of domain parameters. These parameters are
accessible in the setup and equation sections of the component file.

Source Components
The source setting is used for components that provide parameters to other
parts of the model, source components. The following is an example of a
source component, connected to the hydraulic domain t_hydraulic defined
in “Propagation of Domain Parameters” on page 2-31, that provides the
temperature parameter to the rest of the model.

component hydraulic_temperature ( Propagation = source )

% Hydraulic Temperature

% Provide hydraulic temperature to the rest of the model

parameters

t = { 60, 'C' }; % Fluid temperature

end

nodes

a = MySimscapeLibrary.t_hydraulic; % hydraulic node to connect to the rest of the system

end

function setup

a.t = t; % set temperature at node to temperature parameter

end

equation

a.q == 0; % no flow through node a

end

end

When you generate a Simscape block from this component file, the block
dialog box will have a parameter labelled Fluid temperature. You can then
use it to enter the temperature value for the hydraulic fluid used in the model.

If a component is specified as a source component and does not set all of the
domain parameters of all of its public nodes, an error will result.

2-32



Working with Domain Parameters

Blocking Components
Blocking components are those components that do not propagate domain
parameters. These components have their Propagation attribute set to
blocks. It is illegal to access domain parameters in blocking components.

2-33



2 Writing Simscape™ Files

Attribute Lists

In this section...

“Attribute Types” on page 2-34
“Model Attributes” on page 2-34
“Member Attributes” on page 2-35

Attribute Types
The attributes appear in an AttributeList, which is a comma separated list
of pairs, as defined in the MATLAB class system grammar. Simscape file
grammar allows attribute lists to appear in two situations:

Model ModelClass [ ( AttributeList ) | Space ] Identifier [ <
Identifier ] Separator
DeclarationSection Separator
[ SetupSection Separator ]
[ EquationSection Separator ]
end

DeclarationBlock MemberClass [ ( AttributeList ) ] Separator
Identifier = Expression Separator
[ Identifier = Expression Separator ]
end

Therefore, Simscape language distinguishes between two types of attributes:
model attributes and member attributes.

Model Attributes
Model attributes are applicable only to model type component.

2-34



Attribute Lists

Attribute Values Default Model Classes Description

Propagation propagates
source
blocks

propagates component Defines the
domain data
propagation of
the component.
See “Propagation
of Domain
Parameters” on
page 2-31.

Hidden true
false

false component Defines the
visibility of
the entire
component. This
dictates whether
the component
shows up in a
generated library
or report.

Component model attributes apply to the entire model. For example:

component MyParameterSource ( Propagation = source )
% component model goes here

end

Here, Propagation is a model attribute.

Member Attributes
Member attributes apply to a whole DeclarationBlock.

2-35



2 Writing Simscape™ Files

Attribute Values Default Member
Classes

Description

Access public
private
protected

public all Defines the read
and write access
of members.
Private members
are only
accessible to
the instance of
the component
model and not to
external clients.

Hidden true
false

false all Sets the visibility
of the member
in the user
interface.

Conversion absolute
relative

absolute parameters Defines how the
parameter units
are converted for
use in the setup
and equation
sections. See
“Specifying
Parameter Units”
on page 2-8.

The attribute list for the DeclarationBlock appears after MemberClass
keyword. For example:

parameters ( Access = public, Hidden = true )
% parameters go here

end

Here, all parameters in the declaration block are externally writable, but they
will not appear in the block dialog box.

2-36



Subclassing and Inheritance

Subclassing and Inheritance
Subclassing allows you to build component models based on other component
models by extension. Subclassing applies only to component models, not
domain models. The syntax for subclassing is based on the MATLAB class
system syntax for subclassing using the < symbol on the declaration line of
the component model:

component MyExtendedComponent < MyBaseComponent
% component implementation here

end

By subclassing, the subclass inherits all of the members (parameters,
variables, nodes, inputs and outputs) from the base class and can add
members of its own. When using the subclass as an external client, all public
members of the base class are available. All public and protected members
of the base class are available to the setup and equation functions of the
subclass. The subclass may not declare a member with the same identifier as
a public or protected member of the base class.

The setup function of the base class is executed before the setup function
of the subclass. The equations of both the subclass and the base class are
included in the overall system of equations. For example:

component ElectricalBranch
% Defines an electrical branch with positive
% and negative external nodes. Also defines internal
% current and voltage.

nodes
p = foundation.electrical.electrical;
n = foundation.electrical.electrical;

end
variables

i = { 0, 'A' };
v = { 0, 'V' };

end
function setup

across( v, p.v, n.v );
through( i, p.i, n.i );

end

2-37



2 Writing Simscape™ Files

end

component Capacitor < ElectricalBranch
parameters

c = { 1, 'F' };
end
function setup

if c <= 0
error( 'Capacitance must be greater than zero' );

end
end
equation

i == c * v.der;
end

end

2-38



3

Using Simscape Files in
Block Diagrams

• “Adding Custom Block Libraries Generated from Simscape Component
Files” on page 3-2

• “Customizing the Block Name and Appearance” on page 3-9

• “Case Study — Creating a Basic Custom Block Library” on page 3-19

• “Case Study — Creating an Electrochemical Library” on page 3-26



3 Using Simscape™ Files in Block Diagrams

Adding Custom Block Libraries Generated from Simscape
Component Files

In this section...

“Organizing and Converting Your Simscape Files” on page 3-2
“Customizing the Library Name and Appearance” on page 3-4
“Customizing the Library Icon” on page 3-5
“Example — Creating and Customizing Block Libraries” on page 3-6
“Specifics of Using Customized Domains” on page 3-7

Organizing and Converting Your Simscape Files
After you have created the textual component files, you need to convert them
into Simscape blocks to be able to use them in block diagrams. You do this
by running the ssc_build command on the top-level package directory
containing your Simscape files.

Note Before running the ssc_build command for the first time, you have
to set up your compiler by running mex -setup. For more information, see
“Building MEX-Files” in the MATLAB External Interfaces documentation.

Simscape files must be saved in package directories. For more information
on package directories, see “Scoping Classes with Packages” in the MATLAB
Classes and Object-Oriented Programming documentation. The important
points are:

• The package directory name must begin with a + character.

• The rest of the package directory name (without the + character) must be a
valid MATLAB identifier.

• The package directory’s parent directory must be on the MATLAB path.

3-2



Adding Custom Block Libraries Generated from Simscape™ Component Files

For example, you may have a top-level package directory, where you store
your Simscape files, named +SimscapeCustomBlocks. To generate a custom
block library, at the MATLAB command prompt, type:

ssc_build SimscapeCustomBlocks;

Note The package directory name begins with a leading + character, whereas
the argument to ssc_build must omit the + character.

This command generates a file called SimscapeCustomBlocks_lib.mdl in the
parent directory of the top-level package (that is, in the same directory that
contains your +SimscapeCustomBlocks package). Because this directory is
on the MATLAB path, you can open the library by typing its name at the
MATLAB command prompt. In our example, type:

SimscapeCustomBlocks_lib

The model file generated by running the ssc_build command is the custom
Simscape library containing all the sublibraries and blocks generated from
the Simscape files located in the top- level package. Once you open the custom
Simscape library, you can drag the customized blocks from it into your models.

Creating Sublibraries
Package directories may be organized into subdirectories, with names also
beginning with a + character. After you run the ssc_build command, each
such subdirectory will appear as a sublibrary under the top-level custom
library. You can customize the name and appearance of sublibraries by using
library configuration files.

Note When you add or modify component files in package subdirectories, you
still run the ssc_build command on the top-level package directory. This
updates all the sublibraries.

You may have more than one top-level package directory, that is, more than
one package directory located in a directory on the MATLAB path. Each
top-level package directory generates a separate top-level custom library.

3-3



3 Using Simscape™ Files in Block Diagrams

Customizing the Library Name and Appearance
Package names must be valid MATLAB identifiers. The top-level package
always generates a library model with the name package_name_lib.mdl.
However, library configuration files let you provide descriptive library
names and specify other customizations for sublibraries, generated from
subdirectories in the package hierarchy.

A library configuration file must be located in the package directory and
named lib.m.

Library configuration files are not required. You can choose to provide lib.m
for some subpackages, all subpackages, or for none of the subpackages. If a
subpackage does not contain a lib.m file, the sublibrary is built using the
default values. The top-level package can also contain a lib.m file. Options
such as library name, and other options that do not make sense for a top-level
library, are ignored during build. However, having a file with the same name
and options in the top-level package provides a uniform mechanism that lets
you easily change the library hierarchy.

The following table describes the supported options. The only option that is
required in a lib.m file is Name; others are optional.

Option Usage Description Default For
Top-Level
Package

Name libInfo.Name =
name

name will be used as the name of the
sublibrary (name of the Simulink
subsystem corresponding to the
sublibrary)

Package
name

Ignored

Annotation libInfo.Annotation
= annotation

annotation will be displayed as
annotation when you open the
sublibrary. It can be any text
that you want to display in the
sublibrary.

No
annotation
in the
library

Used in
annotation
for top-
level
library

3-4



Adding Custom Block Libraries Generated from Simscape™ Component Files

Option Usage Description Default For
Top-Level
Package

ShowIcon libInfo.ShowIcon
= false

If there is no library icon
file lib.img, as described in
“Customizing the Library Icon” on
page 3-5, this option is ignored. If
there is an icon file, you can choose
to not use it by setting this option
to false.

true Ignored

ShowName libInfo.ShowName
= true

Allows you to configure whether the
sublibrary name is shown in the
parent library. If there is no library
icon file, then the default library
icon contains the library name, and
showing it again is redundant. If
you are using a library icon file, set
showName to true to display the
library name below the icon.

false Ignored

Hidden libInfo.Hidden =
true

Allows you to configure whether
the sublibrary is visible in the
parent library. Use this option
for a sublibrary containing blocks
that you do not want to expose,
for example, those kept for
compatibility reasons.

false Ignored

Customizing the Library Icon
If a subpackage contains a file named lib.img, where img is one of the
supported image file formats (such as jpg , bmp, or png), then that image file
is used for the icon representing this sublibrary in the parent library. The
icon file (lib.img) and customization file (lib.m) are independent, you can
provide one or the other, both, or none.

The following image file formats are supported:

• jpg

3-5



3 Using Simscape™ Files in Block Diagrams

• bmp

• png

If there are multiple image files, the formats take precedence in the order
listed above. For example, if a subpackage contains both lib.jpg and
lib.bmp, lib.jpg is the image that will appear in the parent library.

You can turn off customizing the library icon by setting showIcon to false
in the library customization file lib.m. In this case, the default library icon
will be used. For more information, see “Customizing the Library Name and
Appearance” on page 3-4.

Example — Creating and Customizing Block Libraries
Consider the following directory structure:

- +MySimscapeLibrary
|-- +MechanicalElements
| |-- lib.m
| |-- lib.jpg
| |-- mass.ssc
| |-- spring.ssc
|-- +ElectricalElements
| |-- ...
|-- +HydraulicElements
| |-- ...

This means that you have a top-level package called +MySimscapeLibrary,
which contains three subpackages, +MechanicalElements,
+ElectricalElements, and +HydraulicElements. The
+MechanicalElements package contains two component files,
mass.ssc and spring.ssc, a library icon file lib.jpg, and the following
library configuration file lib.m:

function lib ( libInfo )

libInfo.Name = 'Basic Mechanical Elements';

libInfo.Annotation = sprintf('This library contains basic mechanical elements');

libInfo.ShowName = true;

3-6



Adding Custom Block Libraries Generated from Simscape™ Component Files

When you run

ssc_build MySimscapeLibrary;

the top-level package generates a library model called
MySimscapeLibrary_lib, as follows:

Notice that the sublibrary generated from the +MechanicalElements package
is presented in its parent library with a customized icon and name (Basic
Mechanical Elements).

If you double-click the Basic Mechanical Elements sublibrary, it opens as
follows:

Specifics of Using Customized Domains
If you define your own physical domains and use them in your custom blocks,
several rules apply.

3-7



3 Using Simscape™ Files in Block Diagrams

• If the domain file resides in a different package from the components that
use it, build the domain package first.

• If you have opened the Library Browser, or a Simulink library or model,
before building the package containing the domain, you have to restart
MATLAB before you can use the components referencing this domain in
your block diagrams.

Otherwise, all the rules for building component libraries apply to domains.
Place domain files in package directories and build them using the ssc_build
command.

3-8



Customizing the Block Name and Appearance

Customizing the Block Name and Appearance

In this section...

“Default Block Display” on page 3-9
“How to Customize the Block Name” on page 3-11
“How to Describe the Block Purpose” on page 3-12
“How to Specify Meaningful Names for the Block Parameters” on page 3-13
“How to Customize the Names and Locations of the Block Ports” on page
3-14
“How to Customize the Block Icon” on page 3-16
“Example — Customized Block Display” on page 3-17

Default Block Display
When you build a custom block, the block name and the parameter names in
the block dialog box are derived from the component file elements. The default
block icon in the custom library is a rectangle displaying the block name. Ports
are based on the nodes, inputs, and outputs defined in the component file.

The following example shows a component file, named my_spring.ssc, and
the resulting library block and dialog box.

component spring
nodes

r = foundation.mechanical.rotational.rotational;
c = foundation.mechanical.rotational.rotational;

end
parameters

k = { 10, 'N*m/rad' };
end
variables

theta = { 0, 'rad' };
t = { 0, 'N*m' };
w = { 0, 'rad/s' };

end
function setup

3-9



3 Using Simscape™ Files in Block Diagrams

if k < 0
error( 'Spring rate must be greater than zero' );

end
through( t, r.t, c.t );
across( w, r.w, c.w );

end
equation

t == k * theta;
w == theta.der;

end
end

If you click the View source for spring link, the my_spring.ssc file opens
in the MATLAB Editor window.

3-10



Customizing the Block Name and Appearance

The following sections show you how to annotate the component file to
improve the block cosmetics. You can provide meaningful names for the
block itself and its parameters in the dialog box, as well as supply a short
description of its purpose. You can also substitute a custom block icon for the
default image and change the names and the default orientation of the ports.

How to Customize the Block Name
To provide a more descriptive name for the block than the name of the
component file, put it on a separate comment line just below the component
declaration. The comment line must begin with the % character. The entire
content of this line, following the % character, is interpreted as the block
name and appears exactly like that in the block icon and at the top of the
block dialog box.

For example, if you have the following component file:

component spring
%Rotational Spring
...
end

these are the resulting block icon and dialog box:

3-11



3 Using Simscape™ Files in Block Diagrams

How to Describe the Block Purpose
The previous section describes how the comment line immediately following
the component declaration is interpreted as the block name. Any additional
comments below that line are interpreted as the block description. You can
have more than one line of description comments. Each line must be no
longer than 80 characters and must begin with the % character. The entire
content of description comments will appear in the block dialog box and in
the Library Browser.

For example, if you have the following component file:

component spring
%Rotational Spring
% This block implements a simple rotational spring.
...
end

this is the resulting block dialog box:

3-12



Customizing the Block Name and Appearance

How to Specify Meaningful Names for the Block
Parameters
You can specify the name of a block parameter, the way you want it to appear
in the block dialog box, as a comment immediately following the parameter
declaration. It can be located on the same line or on a separate line. The
comment must begin with the % character.

For example, if you have the following component file:

component spring
%Rotational Spring
% This block implements a simple rotational spring.
...
parameters

k = { 10, 'N*m/rad' }; % Spring rate
end

...
end

this is the resulting block dialog box:

3-13



3 Using Simscape™ Files in Block Diagrams

How to Customize the Names and Locations of the
Block Ports
Block ports, both conserving and Physical Signal, are based on the nodes,
inputs, and outputs defined in the component file. The default port label
corresponds to the name of the node, input, or output, as specified in the
declaration block. The default location of all ports is on the left side of the
block icon. The ports are spread equidistantly along the block side.

To control the port label and location in the block icon, add a comment
immediately following the corresponding node, input, or output declaration. It
can be on the same line or on a separate line. The comment must begin with
the % character and be of the format label:location, where label is a string
corresponding to the input port name in the block diagram, and location is
one of the following strings: left, right, top, bottom. You can locate all
ports either on one side of the block or on two opposite sides, for example left
and right, or top and bottom. You can omit the location if you want to keep
the default location of the port (on the left side).

You can also leave the port label field empty and specify just the location. In
this case, the port will not have its name displayed. For example, the following
syntax suppresses the port label and locates it on the top of the block icon:

r = foundation.mechanical.rotational.rotational; % :top

If you specify an empty comment string after a node, input, or output
declaration, the corresponding port will not be labelled and will be located on
the left side of the block icon.

3-14



Customizing the Block Name and Appearance

The following are examples of node declarations and the resulting block icons.

Syntax Block Icon

nodes

r = foundation.mechanical.rotational.rotational;

c = foundation.mechanical.rotational.rotational;

end

nodes

r = foundation.mechanical.rotational.rotational; % rod

c = foundation.mechanical.rotational.rotational; % case

end

nodes

r = foundation.mechanical.rotational.rotational;

c = foundation.mechanical.rotational.rotational; % c:right

end

nodes

r = foundation.mechanical.rotational.rotational; % rod

c = foundation.mechanical.rotational.rotational; % case:right

end

3-15



3 Using Simscape™ Files in Block Diagrams

Syntax Block Icon

nodes

r = foundation.mechanical.rotational.rotational; % rod

c = foundation.mechanical.rotational.rotational; % :right

end

nodes

r = foundation.mechanical.rotational.rotational; %

c = foundation.mechanical.rotational.rotational; % case:right

end

How to Customize the Block Icon
If the subpackage containing the component file (for example, my_spring.ssc)
also contains a file named my_spring.img, where img is one of the supported
image file formats (such as jpg , bmp, or png), then that image file is used for
the icon representing this block in the custom library.

The following image file formats are supported:

• jpg

• bmp

• png

If there are multiple image files, the formats take precedence in the order
listed above. For example, if the subpackage contains both my_spring.jpg
and my_spring.bmp, my_spring.jpg is the image that will appear in the
custom library.

3-16



Customizing the Block Name and Appearance

Example — Customized Block Display
The following shows a complete example of a component file with
annotation and the resulting library block and dialog box. The file is named
my_spring.ssc, and the package contains the image file my_spring.jpg,
as described in the previous section, “How to Customize the Block Icon” on
page 3-16.

component spring
% Rotational Spring
% This block implements a simple rotational spring.

nodes
r = foundation.mechanical.rotational.rotational; % rod
c = foundation.mechanical.rotational.rotational; % case:right

end
parameters

k = { 10, 'N*m/rad' }; % Spring rate
end
variables

theta = { 0, 'rad' };
t = { 0, 'N*m' };
w = { 0, 'rad/s' };

end
function setup

if k < 0
error( 'Spring rate must be greater than zero' );

end
through( t, r.t, c.t );
across( w, r.w, c.w );

end
equation

t == k * theta;
w == theta.der;

end
end

3-17



3 Using Simscape™ Files in Block Diagrams

3-18



Case Study — Creating a Basic Custom Block Library

Case Study — Creating a Basic Custom Block Library

In this section...

“Getting Started” on page 3-19
“Building the Custom Library” on page 3-20
“Adding a Block” on page 3-20
“Adding Detail to a Component” on page 3-21
“Adding a Component with an Internal Variable” on page 3-23
“Customizing the Block Icon” on page 3-25

Getting Started
This case study explains how to build your own library of custom blocks based
on component files. It uses a demo library of capacitor models. The library
makes use of the built-in Simscape electrical domain, and defines three simple
components. For more advanced topics, including adding multiple levels of
hierarchy, adding new domains, and customizing the appearance of a library,
see “Case Study — Creating an Electrochemical Library” on page 3-26.

The demo library comes built and on your path so that it is readily executable.
However, it is recommended that you copy the source files to a new directory,
for which you have write permission, and add that directory to your MATLAB
path. This will allow you to make changes and rebuild the library for yourself.
The source files for the demo library are in the following package directory:

matlabroot/toolbox/physmod/simscape/simscapedemos/demolibraries/+capacitors

where matlabroot is the MATLAB root directory on your machine, as
returned by entering

matlabroot

in the MATLAB Command Window.

After copying the files, change the directory name +capacitors to another
name, for example +my_capacitors, so that your copy of the library builds
with a unique name.

3-19



3 Using Simscape™ Files in Block Diagrams

Building the Custom Library
To build the library, type

ssc_build my_capacitors

in the MATLAB Command Window. If building from within the
+my_capacitors package directory, you can omit the argument and type just

ssc_build

When the build completes, open the generated library by typing

my_capacitors_lib

For more information on the library build process, see “Adding Custom Block
Libraries Generated from Simscape Component Files” on page 3-2.

Adding a Block
To add a block, write a corresponding component file and place it in
the package directory. For example, the Ideal Capacitor block in your
my_capacitors_lib.mdl is produced by the ideal_capacitor.ssc file. Open
this file in the MATLAB Editor and examine its contents.

component ideal_capacitor
% Ideal Capacitor
% Models an ideal (lossless) capacitor. The output current I is related
% to the input voltage V by I = C*dV/dt where C is the capacitance.

% Copyright 2008 The MathWorks, Inc.

nodes
p = foundation.electrical.electrical; % +:top
n = foundation.electrical.electrical; % -:bottom

end
parameters

C = { 1, 'F' }; % Capacitance
V0 = { 0, 'V' }; % Initial voltage

end
variables

3-20



Case Study — Creating a Basic Custom Block Library

i = { 0, 'A' }; % Current through variable
v = { 0, 'V' }; % Voltage across variable

end
function setup

if C <= { 0, 'F'}
error( 'Capacitance must be greater than zero' )

end
through( i, p.i, n.i ); % Through variable i from node p to node n
across( v, p.v, n.v ); % Across variable v from p to n
v = V0;

end
equation

i == C*v.der; % Equation
end

end

First, let us examine the elements of the component file that affect
the block appearance. Double-click the Ideal Capacitor block in the
my_capacitors_lib.mdl to open its dialog box, and compare the block icon
and dialog box to the contents of the ideal_capacitor.ssc file. The block
name, Ideal Capacitor, is taken from the comment on line 2. The comments on
lines 3 and 4 are then taken to populate the block description in the dialog box.
The block ports are defined by the nodes section. The comment expressions
at the end of each line control the port label and location. Similarly in the
parameters section, the comments are used to define parameter names in
the block dialog box. For details, see “Customizing the Block Name and
Appearance” on page 3-9.

Also notice that in the setup section there is a check to ensure that the
capacitance value is always greater than zero. This is good practice to ensure
that a component is not used outside of its domain of validity. The Simscape
Foundation library blocks have such checks implemented where appropriate.

Adding Detail to a Component
In this demo library there are two additional components that can be used
for ultracapacitor modeling. These components are evolutions of the Ideal
Capacitor. It is good practice to incrementally build component models,
adding and testing additional features as they are added.

3-21



3 Using Simscape™ Files in Block Diagrams

Ideal Ultracapacitor

Ultracapacitors, as their name suggests, are capacitors with a very high
capacitance value. The relationship between voltage and charge is not
constant, unlike for an ideal capacitor. Suppose a manufacturer data sheet
gives a graph of capacitance as a function of voltage, and that capacitance
increases approximately linearly with voltage from the 1 farad at zero volts to
1.5 farads when the voltage is 2.5 volts. If the capacitance voltage is denoted
v, then the capacitance can be approximated as:

C v= +1 0 2. i

For a capacitor, current i and voltage v are related by the standard equation

i C
dv
dt

=

and hence

i C C v
dv
dtv= +( )0 i

where C0 = 1 and Cv = 0.2. This equation is implemented by the following line
in the equation section of the Simscape file ideal_ultracapacitor.ssc:

i == (C0 + Cv*v)*v.der;

In order for the Simscape software to interpret this equation, the variables
(v and i) and the parameters (C0 and Cv) must be defined in the declaration

3-22



Case Study — Creating a Basic Custom Block Library

section. For more information, see “Declaring Component Variables” on page
2-7and “Declaring Component Parameters” on page 2-8.

Adding a Component with an Internal Variable
Implementing some component equations requires the use of internal
variables. An example is when implementing an ultracapacitor with resistive
losses. There are two resistive terms, the effective series resistance R, and
the self-discharge resistance Rd. Because of the topology, it is not possible to
directly express the capacitor equations in terms of the through and across
variables i and v.

Ultracapacitor with Resistive Losses

This block is implemented by the component file lossy_ultracapacitor.ssc.
Open this file in the MATLAB Editor and examine its contents.

component lossy_ultracapacitor
% Lossy Ultracapacitor
% Models an ultracapacitor with resistive losses. The capacitance C
% depends on the voltage V according to C = C0 + V*dC/dV. A
% self-discharge resistance is included in parallel with the capacitor,
% and an equivalent series resistance in series with the capacitor.

% Copyright 2008 The MathWorks, Inc.

nodes
p = foundation.electrical.electrical; % +:top
n = foundation.electrical.electrical; % -:bottom

end

3-23



3 Using Simscape™ Files in Block Diagrams

parameters
C0 = { 1, 'F' }; % Nominal capacitance C0 at V=0
Cv = { 0.2, 'F/V'}; % Rate of change of C with voltage V
R = {2, 'Ohm' }; % Effective series resistance
Rd = {500, 'Ohm' }; % Self-discharge resistance
V0 = { 0, 'V' }; % Initial voltage

end
variables

i = { 0, 'A' }; % Current through variable
v = { 0, 'V' }; % Voltage across variable
vc = { 0, 'V' }; % Internal variable for capacitor voltage

end
function setup

if C0 <= { 0, 'F'}
error( 'Nominal capacitance C0 must be greater than zero' )

end
if R <= { 0, 'Ohm'}

error( 'Effective series resistance must be greater than zero' )
end
if Rd <= { 0, 'Ohm'}

error( 'Self-discharge resistance must be greater than zero' )
end
through( i, p.i, n.i ); % Through variable i from node p to node n
across( v, p.v, n.v ); % Across variable v from p to n
vc = V0;

end
equation

i == (C0 + Cv*v)*vc.der + vc/Rd; % Equation 1
v == vc + i*R; % Equation 2

end
end

The additional variable is used to denote the voltage across the capacitor, vc.
The equations can then be expressed in terms of v, i, and vc using Kirchhoff’s
current and voltage laws. Summing currents at the capacitor + node gives
the first Simscape equation:

i == (C0 + Cv*v)*v.der + vc/Rd;

Summing voltages gives the second Simscape equation:

3-24



Case Study — Creating a Basic Custom Block Library

v == vc + i*R;

As a check, the number of equations required for a component used in a single
connected network is given by the sum of the number of ports plus the number
of internal variables minus one. Here this gives 2 + 1 - 1 = 2.

In the Simscape file, the initial condition (initial voltage in this example) is
applied to variable vc and not v. This is because initial conditions should be
applied only to differential variables. In this case, vc is readily identifiable as
the differential variable as it has the der (differentiator) operator applied to it.

Customizing the Block Icon
The capacitor blocks in the demo library my_capacitors_lib.mdl have icons
associated with them.

During the library build, if there is an image file in the directory with
the same name as the Simscape component file, then this is used to define
the icon for the block. For example, the Ideal Capacitor block defined by
ideal_capacitor.ssc uses the ideal_capacitor.jpg to define its block icon.
If you do not include an image file, then the block displays its name in place of
an icon. For details, see “How to Customize the Block Icon” on page 3-16.

3-25



3 Using Simscape™ Files in Block Diagrams

Case Study — Creating an Electrochemical Library

In this section...

“Getting Started” on page 3-26
“Building the Custom Library” on page 3-27
“Defining a New Domain” on page 3-27
“Structuring the Library” on page 3-30
“Defining a Reference Component” on page 3-30
“Defining an Ideal Source Component” on page 3-31
“Defining Measurement Components” on page 3-32
“Defining Basic Components” on page 3-34
“Defining a Cross-Domain Interfacing Component” on page 3-36
“Customizing the Appearance of the Library” on page 3-38
“Using the Custom Components to Build a Model” on page 3-39
“References” on page 3-39

Getting Started
This case study explores more advanced topics of building custom Simscape
libraries. It uses a demo library for modeling electrochemical systems. The
library introduces a new electrochemical domain and defines all of the
fundamental components required to build electrochemical models, including
an electrochemical reference, through and across sensors, sources, and a
cross-domain component. The example illustrates some of the salient features
of Physical Networks modeling, such as selection of Through and Across
variables and how power is converted between domains. We suggest that you
work through the previous section, “Case Study — Creating a Basic Custom
Block Library” on page 3-19, before looking at this more advanced example.

The demo library comes built and on your path so that it is readily executable.
However, it is recommended that you copy the source files to a new directory,
for which you have write permission, and add that directory to your MATLAB
path. This will allow you to make changes and rebuild the library for yourself.
The source files for the demo library are in the following package directory:

3-26



Case Study — Creating an Electrochemical Library

matlabroot/toolbox/physmod/simscape/simscapedemos/demolibraries/+electrochem

where matlabroot is the MATLAB root directory on your machine, as
returned by entering

matlabroot

in the MATLAB Command Window.

After copying the files, change the directory name +electrochem to another
name, for example +my_electrochem, so that your copy of the library builds
with a unique name.

Building the Custom Library
To build the library, type

ssc_build my_electrochem

in the MATLAB Command Window. If building from within the
+my_electrochem package directory, you can omit the argument and type just

ssc_build

When the build completes, open the generated library by typing

my_electrochem_lib

For more information on the library build process, see “Adding Custom Block
Libraries Generated from Simscape Component Files” on page 3-2.

Defining a New Domain
Simscape software comes with several built-in domains, such as mechanical
translational, mechanical rotational, electrical, hydraulic, and so on.
Where possible, use these predefined domains. For example, when
creating new electrical components, use the built-in electrical domain
foundation.electrical.electrical. This ensures that your components
can be connected to the standard Simscape blocks.

3-27



3 Using Simscape™ Files in Block Diagrams

As an example of an application requiring the addition of a new domain,
consider a battery where the underlying equations involve both electrical
and chemical processes [1].

Electrochemical Battery Driving a Resistive Load R

Two half-cells are separated by a membrane that prevents the ions flowing
between cells, and hence electrons flow from the solid lead anode to the
platinum cathode. The two half-cell reactions are:

Pb Pb e↔ ++ −2 2

Fe Fe e2 3+ + −↔ +

The current results in the lead being oxidized and the iron being reduced,
with the overall reaction given by:

Pb Fe Pb Fe+ ↔ ++ + +2 23 2 2

The chemical reaction can be modeled using the network concepts of Through
and Across variables (for details, see “Basic Principles of Modeling Physical
Networks” in the Simscape User’s Guide). The Through variable represents
flow, and the Across variable represents effort. When selecting the Through

3-28



Case Study — Creating an Electrochemical Library

and Across variables, you should use SI units and the product of the two
variables is usually chosen to have units of power.

In the electrochemical reactions, an obvious choice for the Through variable is
the molar flow rate �n of ions, measured in SI units of mol/s. The corresponding
Across variable is called chemical potential, and must have units of J/mol to
ensure that the product of Through and Across variables has units of power,
J/s. The chemical potential or Gibb’s free energy per mol is given by:

μ μ= +0 RT aln

where μ0 is the standard state chemical potential, R is the perfect gas
constant, T is the temperature, and a is the activity. In general, the
activity can be a function of a number of different parameters, including
concentration, temperature, and pressure. Here it is assumed that the
activity is proportional to the molar concentration defined as number of moles
of solute divided by the mass of solvent.

To see the electrochemical domain definition, open the Simscape file
+my_electrochem/electrochem.ssc.

domain electrochem
% Define through and across variables for the electrochemical domain

% Copyright 2008 The MathWorks, Inc.

variables
% Chemical potential
mu = { 1.0 'J/mol' };

end
throughs

% Molar flow
ndot = { 1.0 'mol/s' };

end

end

The molar fundamental dimension and unit is predefined in the Simscape
unit registry. If it had not been, then you could have added it with:

3-29



3 Using Simscape™ Files in Block Diagrams

pm_adddimension(`mole','mol')

Structuring the Library
It is good practice to structure a library by adding hierarchy. To do this, you
can subdivide the package directory into subdirectories, each subdirectory
name starting with the + character. If you look at the +my_electrochem
directory, you will see that it has subdirectories +sensors, +sources, and
+elements. Open the library by typing my_electrochem_lib, and you will see
the three corresponding sublibraries.

Defining a Reference Component
A physical network must have a reference block, against which Across
variables are measured. So, for example, the Foundation library contains the
Electrical Reference block for the electrical domain, Mechanical Rotational
Reference block for the rotational mechanical domain, and so on. The
electrochemical zero chemical potential is defined by the component file
+my_electrochem/+elements/reference.ssc.

component reference
% Chemical Reference
% Port A is a zero chemical potential reference port.

% Copyright 2008 The MathWorks, Inc.

nodes
A = electrochem.electrochem; % A:top

3-30



Case Study — Creating an Electrochemical Library

end
variables

mu = {0, 'J/mol'};
end
function setup

across( mu, A.mu, [] ); % Assign mu to across variable from A to B
end
equation

% Equations
mu == 0;

end
end

The component has one electrochemical port, named A. The chemical potential
is defined as zero by equation:

mu == 0;

Variable mu is defined as the across variable from the A port to zero with the
following line at setup, the empty square brackets denoting the zero reference:

across( mu, A.mu, [] );

Defining an Ideal Source Component
An ideal Across source provides a constant value for the Across
variable regardless of the value of the Through variable. In the
electrical domain, this corresponds to the DC Voltage Source block
in the Foundation library. In the demo library, the component file
+my_electrochem/sources/chempotential_source.ssc implements the
equivalent source for the chemical domain.

component chempotential_source

% Constant Potential Source

% Provides a constant chemical potential between ports A and B.

% Copyright 2008 The MathWorks, Inc.

nodes

A = electrochem.electrochem; % A:top

B = electrochem.electrochem; % B:bottom

end

3-31



3 Using Simscape™ Files in Block Diagrams

parameters

mu0 = {0, 'J/mol'}; % Chemical potential

end

variables

ndot = { 0, 'mol/s' };

mu = { 0, 'J/mol' };

end

function setup

across( mu, A.mu, B.mu ); % Assign mu to across variable from A to B

through( ndot, A.ndot, B.ndot ); % Assign ndot to through variable from A to B

end

equation

% Equations

mu == mu0;

end

end

The dual of an ideal Across source is an ideal Through source, which
maintains the Through variable to some set value regardless of the value of
the Across variable. In the electrical domain, this corresponds to the DC
Current Source block in the Foundation library. In the demo library, this
source is not implemented.

Defining Measurement Components
Every domain requires both a Through and an Across
measurement block. In the demo library, the component file
+my_electrochem/sources/sensor_through.ssc implements a molar flow
rate sensor.

component sensor_through

% Molar Flow Sensor

% Returns the value of the molar flow between the A and the B port

% to the physical signal port PS.

% Copyright 2008 The MathWorks, Inc.

nodes

A = electrochem.electrochem; % A:top

3-32



Case Study — Creating an Electrochemical Library

B = electrochem.electrochem; % B:bottom

end

outputs

out = { 0, 'mol/s' }; % PS:top

end

variables

ndot = { 0, 'mol/s' };

mu = { 0, 'J/mol' };

end

function setup

through( ndot, A.ndot, B.ndot ); % Assign ndot to through variable from A to B

across( mu, A.mu, B.mu ); % Assign mu to across variable from A to B

end

equation

% Equations

mu == 0; % No potential drop

out == ndot; % Equate value of molar flow to PS output

end

end

The flow rate is presented as a Physical Signal, which can then in turn be
passed to Simulink via a PS-Simulink Converter block. The equation section
requires two equations—one to assign the value of the Through variable to the
Physical Signal output, and one to define the relationship between Through
and Across variables for the sensor. In this case, an ideal flow sensor has zero
potential drop, that is mu == 0, where mu is the chemical potential.

The component file +my_electrochem/sources/sensor_across.ssc
implements a chemical potential sensor.

component sensor_across

% Chemical Potential Sensor

% Returns the value of the chemical potential across the A and B ports

% to the physical signal port PS.

% Copyright 2008 The MathWorks, Inc.

nodes

A = electrochem.electrochem; % A:top

3-33



3 Using Simscape™ Files in Block Diagrams

B = electrochem.electrochem; % B:bottom

end

outputs

out = { 0, 'J/mol' }; % PS:top

end

variables

ndot = { 0, 'mol/s' };

mu = { 0, 'J/mol' };

end

function setup

through( ndot, A.ndot, B.ndot ); % Assign ndot to through variable from A to B

across( mu, A.mu, B.mu ); % Assign mu to across variable from A to B

end

equation

% Equations

ndot == 0; % Draws no molar flow

out == mu; % Equate value of chemical potential difference to PS output

end

end

The chemical potential is presented as a Physical Signal, which can then in
turn be passed to Simulink via a PS-Simulink Converter block. The equation
section requires two equations—one to assign the value of the Across variable
to the Physical Signal output, and one to define the relationship between
Through and Across variables for the sensor. In this case, an ideal chemical
potential sensor draws no flow, that is ndot == 0, where ndot is the flow rate.

Defining Basic Components
Having created the measurement and reference blocks, the next step is to
create blocks that define behavioral relationships between the Through and
Across variables. In the electrical domain, for example, such components
are resistor, capacitor, and inductor.

As an example of a basic electrochemical component, consider the chemical
reduction or oxidation of an ion, which can be thought of as the electrochemical
equivalent of a nonlinear capacitor. The defining equations in terms of
Through and Across variables ν and μ are:

3-34



Case Study — Creating an Electrochemical Library

�n = ν

a
n

C M
=

0

μ μ= +0 RT aln

where n is the number of moles of the ion, C0 is the standard concentration of
1 mol/kg, and M is the mass of the solute.

To see the implementation of these equations, open the file
+my_electrochem/elements/chem_energy_store.ssc.

component chem_energy_store
% Chemical Energy Store
% Represents a solution of dissolved ions. The port A presents the
% chemical potential defined by mu0 + log(n/(C0*M))*R*T where mu0 is the
% standard state oxidising potential, n is the number of moles of the ion
% C0 is the standard concentration of 1 mol/kg, M is the mass of solvent,
% R is the universal gas constant, and T is the temperature.

% Copyright 2008 The MathWorks, Inc.

nodes
A = electrochem.electrochem; % A:top

end
parameters

mu0 = {-7.42e+04, 'J/mol'}; % Standard state oxidising potential
n0 = {0.01, 'mol'}; % Initial quantity of ions
m_solvent = {1, 'kg'}; % Mass of solvent
T = {300, 'K'}; % Temperature

end
parameters (Access=private)

R = {8.314472, '(J/K)/mol'}; % Universal gas constant
C0 = {1, 'mol/kg'}; % Standard concentration
n1 = {1e-10, 'mol'}; % Minimum number of moles

end
variables

ndot = { 0, 'mol/s' };

3-35



3 Using Simscape™ Files in Block Diagrams

mu = { 0, 'J/mol' };
n = {0.01, 'mol'}; % Quantity of ions

end
function setup

through( ndot, A.ndot, [] ); % Through variable ndot
across( mu, A.mu, [] ); % Across variable mu
n = n0;

end
equation

% Equations
n.der == ndot;
if n > n1

mu == mu0 + log(n/(C0*m_solvent))*R*T;
else

mu == mu0 + (log(n1/(C0*m_solvent)) + n/n1 - 1)*R*T;
end

end
end

This component introduces two Simscape language features not yet used in
the blocks looked at so far. These are:

• Use of a conditional statement in the equation section. This is required to
prevent taking the logarithm of zero. Hence if the molar concentration is
less than the specified level n1, then the operand of the logarithm function
is limited. Without this protection, the solver could perturb the value of
n to zero or less.

• Definition of private parameters that can be used in the setup or
equation sections. Here the Universal Gas constant (R) and the Standard
Concentration (C0) are defined as private parameters. Their values could
equally well be used directly in the equations, but this would reduce
readability of the definition. Similarly, the lower limit on the molar
concentration n1 is also defined as a private parameter, but could equally
well have been exposed to the user.

Defining a Cross-Domain Interfacing Component
Cross-domain blocks allow the interchange of energy between domains. For
example, the Rotational Electromechanical Converter block in the Foundation
library converts between electrical and rotational mechanical energy. To

3-36



Case Study — Creating an Electrochemical Library

relate the two sets of Through and Across variables, two equations are
required. The first comes from an underlying physical law, and the second
from summing the powers from the two domains into the converter, which
must total zero.

As an example of an interfacing component, consider the electrochemical
half-cell. The chemical molar flow rate and the electrical current are related
by Faraday’s law, which requires that:

ν = i
zF

where ν is the molar flow rate, i is the current, z is the number of electrons per
ion, and F is the Faraday constant. The second equation comes from equating
the electrical and chemical powers:

V V i2 1 2 1−( ) = −( )μ μ ν

which can be rewritten as:

V V
i zF2 1 2 1

2 1−( ) = −( ) = −μ μ ν μ μ

This is the Nernst equation written in terms of chemical potential difference,
(μ2 – μ1). These chemical-electrical converter equations are implemented by
the component file +my_electrochem/elements/chem2elec.ssc.

component chem2elec

% Chemical to Electrical Converter

% Converts chemical energy into electrical energy (and vice-versa

% assuming no losses. The electrical current flow i is related to the

% molar flow of electrons ndot by i = -ndot*z*F where F is the Faraday

% constant and z is the number of exchanged electrons.

% Copyright 2008 The MathWorks, Inc.

nodes

p = foundation.electrical.electrical; % +:top

n = foundation.electrical.electrical; % -:top

3-37



3 Using Simscape™ Files in Block Diagrams

A = electrochem.electrochem; % A:bottom

B = electrochem.electrochem; % B:bottom

end

parameters

z = {1, '1'}; % Number of exchanged electrons

F = {9.6485309e4, 'c/mol'}; % Faraday constant

end

variables

i = { 0, 'A' };

v = { 0, 'V' };

ndot = { 0, 'mol/s' };

mu = { 0, 'J/mol' };

end

function setup

through( i, p.i, n.i ); % Through variable i from node p to node n

across( v, p.v, n.v ); % Across variable v from p to n

through( ndot, A.ndot, B.ndot ); % Through variable ndot from node A to node B

across( mu, A.mu, B.mu ); % Across variable mu from A to B

end

equation

% Equations

v == mu/(z*F); % From equating power

ndot == -i/(z*F); % Balance electrons (Faraday's Law)

end

end

This component has four ports but only two equations. This is because the
component interfaces two different physical networks. Each of the networks
has two ports and one equation, thus satisfying the requirement for n–1
equations, where n is the number of ports. In the case of a cross-domain
component, the two equations are coupled, thereby defining the interaction
between the two physical domains.

Customizing the Appearance of the Library
The library can be customized using lib.m files. A lib.m file located in the
top-level package directory can be used to add annotations. The name of the
top-level library model is constructed automatically during the build process
based on the top-level package name, as package_lib.mdl, but you can add a
more descriptive name to the top-level library as an annotation. For example,

3-38



Case Study — Creating an Electrochemical Library

open +my_electrochem/lib.m in the MATLAB Editor. The following line
annotates the top-level library with its name:

libInfo.Annotation = sprintf('Example Electrochemical Library')

In the electrochemical library example, lib.m files are also placed in each
subpackage directory to customize the name and appearance of respective
sublibraries. For example, open +my_electrochem/+sensors/lib.m in the
MATLAB Editor. The following line causes the sublibrary to be named
Electrochemical Sensors:

libInfo.Name = 'Electrochemical Sensors';

In the absence of the lib.m file, the library would be named after the
subpackage name, that is, sensors. For more information, see “Customizing
the Library Name and Appearance” on page 3-4.

Using the Custom Components to Build a Model
The Model Using a Customized Electrochemical Library demo
(ssc_electrochemical_battery) uses the electrochemical library to model a
lead-iron battery. See the demo help for further information.

References
[1] Pêcheux, F., Allard, B., Lallement, C. & Vachoux, A. & Morel, H.,
Modeling and Simulation of Multi-Discipline Systems using Bond Graphs
and VHDL-AMS, International Conference on Bond Graph Modeling and
Simulation (ICBGM), New Orleans, USA, 23-27 Jan. 2005.

3-39



3 Using Simscape™ Files in Block Diagrams

3-40



Index

IndexS
Simscape™ language 1-2

creating custom block libraries 3-2
creating sublibraries 3-3
file structure 1-9
syntax 1-10
turning component files into Simscape™

blocks 3-2
workflows 1-3

Index-1


	toc
	About the Simscape Language
	What Is Simscape Language?
	Typical Tasks
	About Simscape Files
	Simscape File Type
	Model Types
	Basic File Structure
	Basic Grammar

	Creating a New Physical Domain
	When to Define a New Physical Domain
	How to Define a New Physical Domain

	Creating Custom Components
	Component Types and Prerequisites
	How to Create a New Behavioral Model
	Defining Domain-Wide Parameters
	Adding a Custom Block Library


	Writing Simscape Files
	Declaring Domains and Components
	Declaration Grammar
	Definitions
	Member Declarations
	Member Summary
	Declaring a Member as a Value with Unit
	Declaring Through and Across Variables for a Domain
	Declaring Component Variables
	Declaring Component Parameters
	Specifying Parameter Units

	Declaring Domain Parameters
	Declaring Component Nodes
	Declaring Component Inputs and Outputs
	Example — Declaring a Mechanical Rotational Domain
	Example — Declaring a Spring Component

	Defining Component Setup
	Setup Section Purpose
	Validating Parameters
	Computing Derived Parameters
	Setting Initial Conditions
	Defining Relationship Between Component Variables and Nodes

	Defining Component Equations
	Equation Section Purpose
	Equation Grammar
	Specifying Mathematical Equality
	Use of Relational Operators in Equations
	Equation Dimensionality
	Equation Continuity
	Using if Statements in Equations
	Example

	Examples of Equations
	Simple Algebraic System
	Using Simulation Time in Equations


	Putting It Together — Complete Component Examples
	Mechanical Component Example — Spring
	Electrical Component Example — Ideal Capacitor

	Working with Domain Parameters
	Propagation of Domain Parameters
	Propagating Components
	Source Components
	Blocking Components

	Attribute Lists
	Attribute Types
	Model Attributes
	Member Attributes

	Subclassing and Inheritance

	Using Simscape Files in Block Diagrams
	Adding Custom Block Libraries Generated from Simscape Component 
	Organizing and Converting Your Simscape Files
	Creating Sublibraries

	Customizing the Library Name and Appearance
	Customizing the Library Icon
	Example — Creating and Customizing Block Libraries
	Specifics of Using Customized Domains

	Customizing the Block Name and Appearance
	Default Block Display
	How to Customize the Block Name
	How to Describe the Block Purpose
	How to Specify Meaningful Names for the Block Parameters
	How to Customize the Names and Locations of the Block Ports
	How to Customize the Block Icon
	Example — Customized Block Display

	Case Study — Creating a Basic Custom Block Library
	Getting Started
	Building the Custom Library
	Adding a Block
	Adding Detail to a Component
	Adding a Component with an Internal Variable
	Customizing the Block Icon

	Case Study — Creating an Electrochemical Library
	Getting Started
	Building the Custom Library
	Defining a New Domain
	Structuring the Library
	Defining a Reference Component
	Defining an Ideal Source Component
	Defining Measurement Components
	Defining Basic Components
	Defining a Cross-Domain Interfacing Component
	Customizing the Appearance of the Library
	Using the Custom Components to Build a Model
	References


	Index


